ED 161 762

SE 025 269

AUTHOR

Rust, Harry K.: And Others

TITLE

Demonstration and Research Pest Control: A Training

Program for the Certification of Pesticide

Applicators, Manual No. 10.

INSTITUTION

Extension Service (DOA), Washington, D.C.; Virginia

Polytechnic Inst. and State Univ., Blacksburg.

Extension Div.

PUB DATE

[76] 107p.

EDRS PRICE DESCRIPTORS

MF-\$0.83 HC-\$6.01 Plus Postage.

*Agricultural Chemical Occupations; Agricultural Education; Environment; Herbicides; Insecticides; *Instructional Materials; *Manuals; *Pesticides; Postsecondary Education; Rodenticides; Safety;

rostsecondary Education; Rodentics Science Education

IDENTIFIERS

*Pest Control; *Virginia.

ABSTRACT

This manual is intended to provide the information necessary to meet EPA standards for demonstration and research pest control and prepare for the written examination required for certification. Emphasis is placed on the principles of safe pesticide use. Chapters are included on pesticide applicator certification in Virginia, basics of pest management, EPA regulations, guidelines for minimizing pesticide pollution, agricultural spray adjuvants, variables affecting the efficacy of pesticides, soil application, basics of insecticides, herbicides, fungicides, rodenticides, avicides, and nematicides. (BB)

* Reproductions supplied by EDRS are the best that can be made from the original document. ED161762.

L. C. Gibles

U.S. DEPARTMENT OF HEALTH EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS OCCUMENT HAS BEEN REPROOUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGINATING-LY POINTS OF VIEW OR OPINIONS
STATEO DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR

PESTICIDE

APPLICATOR

CERTIFICATION

TRAINING

MANUAL NO. 10

DEMONSTRATION AND RESEARCH PEST CONTROL

The Virginia Cooperative Extension Service by law and purpose is dedicated to serve all people on an equal and nondiscriminatory basis.

An Equal Opportunity/Affirmative Action Employer

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. W. E. Skelton, Dean, Extension Division, Cooperative Extension Service, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061,—

DEMONSTRATION AND RESEARCH PEST CONTROL

A Training Program for the Certification of Pesticide Applicators

PREPARED BY

Mr. Harry K. Rust, Virginia Department of Agriculture and Commerce, Richmond

Dr. William H Robinson, Extension Specialist, Entomology Dr. Norman E. Lau, Coordinator, Chemicals, Drugs and

Pesticide Unit

TABLÉ OF CONTENTS

	Page
Pesticid Applicator Certification	- 1.
in Wirginia	.
Basics of Pest Management	·- 5
Some EPA Regulations - What They	, 12
Guidelines for Minimizing Pesticide Pollution	- 23 -
Agricultural Spray Adjuvants	- 38
Variables Affecting the Efficacy of Pesticides When Applied to Plants, - Animals, and Soil (Introduction)	- 46
Variables Affecting the Effectiveness of Pesticides	47
Effectiveness of Pesticides Applied ' to the Soil '	- 53
Variables Affecting the Efficacy of Insecticides	62
Basics of Pesticides (Introduction)	- 69
Basics of Insecticides	- 70
Basics of Herbicides =	- 79
Fungicides and Their Action	- 86
Rodenticides and Avicides	- 94
Nematicides	- 100

ERIC

INTRODUCTION

This training manual is intended to provide the information necessary to meet the EPA standards for Demonstration and Research Pest Control and prepare you for the written examination required for certification. The emphasis in this manual and the standards set forth are on the principles involved in the application of pesticides so as to not only be effective but safe for man and the environment.

Further information and new developments will be made available to you through the Cooperative Extension Service at Virginia Polytechnic Institute and State University.

PESTICIDE APPLICATOR · CERTIFICATION IN VIRGINIA

The first regulation of pesticides came in 1947 with enactment of the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). This was primarily a registration and Labeling law. It required registration of all pesticides distributed in interstate commerce and registered only those pesticides shown to be effective for their intended purpose. A very similar law was enacted in Virginia one year later, in 1948.

The first real change in the federal law was brought about by Congressional amendments in the form of the "Federal Environmental Pesticide Control Act of 1972." Along with the many other changes, the amended Federal Law required the Administrator of the Environmental Protection Agency (EPA) to classify all pesticides into either "general use" or "restricted use! categories. It further requires that after October 1977 those pesticides classified for "restricted use" may be applied only by or under the supervision of persons certified as competent to make such applications safely. The safety considerations apply to both the applicator and the environment. In addition, the EPA Administrator is required to establish minimum standards of competence which must be demonstrated by all applicators of pesticides classified for "restricted use."

These standards establish two dassifications for applicators -- commercial applicators and private applicators. The commercial applicators will for the most part be people applying pesticides for hire while the private applicator group will be made up of people applying "restricted use" pesticides in the production of agricultural commondities -- primarily farmers.

Any state choosing to provide an applicator certification program must develop a plan subject to EPA approval. While states are not required to develop such a plan, the consequences of not doing so would be that "restricted use" pesticides would not be available for use in that state. The 1975 session of the General Assembly made it possible for Virginia to establish and implement such a program.

The amendments to the Virginia Pesticide Law do little more than provide for the minimum standards already established by EPA. The policy in Virginia will be to start with the minimum and bulled as our experience indicates the need.

These regulations will establish:

- 1. Standards for Private: Applicator Certification
 - 2. Certification options for private applicators
 - 3. Methods for determining competency
 - 4. Standards for application of restricted use pesticides by non-certified applicators
 - 5. Categories for Commercial Applicators (10)
 - 6. Standards of certification for commercial applicators
 - 7. Record-keeping required for commercial applicators
 - 8. Financial responsibility, requirements for commercial applicators.

Virginia will adopt the ten (10) commercial applicator categories established by EPA. Number ten in this list is entitled "Research and Demonstration Pest Control."

All examination, certification, and licensing wilf be the responsibility of the Virginia Department of Agriculture and Commerce. This will be done in conjunction with the training provided and will be administered at the county level. Private applicators (farmers) will not be required to demonstrate an extensive knowledge of pesticide use and application.

It should be kept in mind that certification is not required for all pesticide applicators. The Virginia plan will permit the application of restricted use" pesticides by non-certified applicators provided they are making the application under the supervision of a certified applicator. This will allow family members and employees of the certified applicator to make such applications.

We do not believe there has been any widespread misuse of, pesticides in Virginia; however, we do believe a meaningful training and certification program can and will be quite beneficial to all who participate.

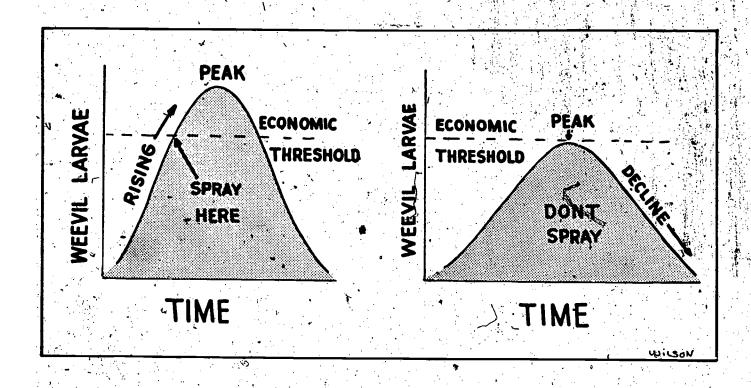
BASICS OF PEST MANAGEMENT

The dilemma of producing adequate food for a rapidly expanding population while maintaining a clean, stable environment has become a major problem in recent years, and will become a critical one within this decade. Problems of pest control will become more varied and intense as attempts are made to increase yield and quality of food and fiber. If these problems are to be met successfully, there must be a change in the concept and practice of pest control.

The concept, currently held by large segments of the public, that chemical weapons alone will suffice, is not acceptable. The application of pesticides to large acreages with little or no regard for deleterious side effects can no longer be ignored. If pest control is to contribute positively to a more productive environment, more attention must be focused on the management of pest populations, and with more concern for all the organisms in the environment.

Pest management involves the integration of various chemical and non-chemical actions with those of the ecosystem to lower and regulate pest populations. Success depends largely on the degree to which the integration of actions is guided by an understanding of the population dynamics of the pest and the general principles of ecology. The philosophy of pest management is to "manage" a pest

population rather than to "eradicate" it. The objective is to combine chemical and non-chemical methods to maintain a pest population below the economic threshold established for that pest on a certain crop.


The concepts of "economic threshold" and "economic injury level" are the cornerstones of pest management.

Establishing the economic threshold for a particular pest and crop is the decision of how large a pest population can be allowed to grow before a pesticide must be applied to control crop loss. The economic threshold is the density at which control measures should be applied to prevent a pest population from reaching the economic injury level.

The economic injury level is the lowest pest population that will cause economic damage to a crop. Sub-economic levels of a pest population not only do little harm, but in some cases may have a beneficial effect. For example, low populations of alfalfa weevil apparently stimulate the alfalfa plant physiologically to produce more growth. This appears to continue until the weevil population gets so large the plant can not tolerate it and loss occurs. The point between a sub-economic level that may benefit the host and a population that is causing economic loss is the economic injury level.

Pest populations can grow so rapidly that to wait.

for it to reach the economic injury level before applying control may be dangerous. Applying controls at the economic threshold is the best time.

Some of the non-chemical methods used in pest management are:

plant resistance insect parasites, and predators insect diseases insect hormones and attractants pest scouting programs

Plant resistance

One of the most important contributions to pest control during the pre-DDT era was the development of pest resistant varieties of crops. Research on insect-resistant crops is still going on. The success of this research is evident in corn varieties that are resistant to European Corn borer, corn, earworm, and corn rootworm; with alfalfas that are resistant to aphids, tolerant of alfalfa weevil; and with a new high-yielding soybean variety with resistance to the Mexican bean beetle.

It usually takes ten or more years to develop acceptable resistant varieties. However, once developed, the resistant plant offers one of the safest and most economical ways of controlling insect pests.

Insect parasites and predators

For more than 80 years researchers in the U. S. have been searching for native of foreign parasites and predators of insects and plant pests. The U.S.D.A. has successfully introduced parasites for the control of several scale insects,

the European corn borer, the gypsy moth, the alfalfa weevil, and others.

Recently, a tiny parasitic wasp was introduced into the U. S. from India to help control the Mexican bean beetle on soybeans. After careful study, thousands of these wasps were released in eastern U. S. The wasps attack the beetle larvae, and are a very effective control measure.

Virginia Tech, in cooperation with the USDA has been conducting extensive research on the use of foreign and native insects to control thistles. After several years of field work, this research is showing signs of success. The beetles that attack the thistle plants have been released in several areas of Virginia.

Insect diseases

There are about 1,100 different viruses, bacteria, fungi, and prototype that attack insects. However, on a world basis, only one virus, two bacteria, and one fungus are produced commercially for insect control. There are many problems associated with the mass production and use of these agents. However, the potential is great, and their specificity is an important consideration in looking to their future use.

One bacterium causes the well-known milky disease of the Japanese beetle. Another bacterium <u>Bacillus</u> thuringiensis -- under the trade name of Dipel, Biotrol or Thuricide-- is

used to control tobacco budworms and hornworms and is also effective against the cabbage looper and imported cabbage worm on cole crops.

Insect hormones and attractants

Insects respond to various chemical substances in plants in their search for food and to the chemical sex attractants produced by the insect for mating. Considerable research is directed to the development of natural and artificial attractants for insect detection and control.

To date, insect attractants have been most useful for detection purposes. Examples include a number of chemicals for Japanese beetle adults, and disparlure for the gypsy moth.

During the last ten years several insect hormones have been synthesized. Natural and synthetic hormonal compounds are now being tested, some right here at Virginia Tech, for possible commercial production.

Pest Scouting

Pest scouting programs have been successful in several southeastern states, including Virginia. People are trained to survey or "scout" large acreages of crops to determine the insect infestation level. This information coupled with data on the economic threshold of certain pests can help to

reduce the amount of insecticide used while providing adequate pest control at a reasonable cost.

Virginia Tech has developed a pest scouting program for the soybean farmers in eastern Virginia. The program is successful and has been adopted by several large growers.

The concept of pest management employs a wide variety of options in devising solutions to pest problems, with the realization that, any one method or technique may not be sufficient to control pest species. For example, several of the previously mentioned methods have been combined in a Mexican bean beetle control program on soybeans: Resistant varieties have been developed, a larval parasite has been introduced, a pest-scouting program has been developed, and there are several effective insecticides registered for soybeans.

In pest management the total complex of pest species of a crop is studied. Rather than trying to destroy a single species which may cause other pests to increase, a variety of methods are used to prevent explosive outbreaks of pest species. Pest management, therefore, takes into account the natural balance between pest and parasite manipulation of host plants, protection and encouragement of natural enemies of the pest species, a cultural and environmental management practices that help reduce outbreaks of pests, and the use of chemicals to hold a pest in check without destroying its enemies.

SOME EPA REGULATIONS - WHAT THEY MEAN TO YOU

Three items involving the use of pesticides by personnel working in this category will be brought to your attention. The objective will be to help orient yourselves regarding your work and these items.

The first item is about EPA regulations which appeared in the Federal Register, Volume 40, #84, Wednesday, April 30, 1975, titled Part 172 "Experimental Use Permits." There are times in research and demonstration work with pesticides that an "Experimental Use Permit" will be necessary for you to obtain.

Pursuant to Section 5 of the Federal Insecticide,
Fungicide, and Rodenticide Act, and except as herein provided
by 172.3, any person wishing to accumulate information
necessary to register under section 3 of the Act and the
regulations thereunder (1) a pesticide not registered with
this Agency or (2) a registered pesticide for a use not
previously approved in the registration of the pesticide may
apply to the Administrator at any time for an experimental
use permit.

Pesticides under experimental use permits may not be sold or distributed other than through participants and, if sold or distributed through participants, may be used only at an application site of a cooperator and in accordance

with the terms and conditions of the experimental use permit

172.3 Scope of requirement

- (a) A substance or mixture of substances being put through laboratory or greenhouse tests, or limited replicated field trials to confirm such tests, or other tests, in which the purpose is only to determine its value for pesticide purposes or to determine its toxicity or other properties, and from which the producer, applicator or any other person conducting the test does not expect to receive any benefit in pest control from its use, is not considered a pesticide within the meaning of the Act and no experimental use permit will be required. This purpose will be presumed for the following types of tests.
- of not more than 10 acres involving use of a particular substance or mixture of substances against a particular pest, provided that any food or feed crops involved in, or affected by, such tests (including but not limited to, crops subsequently grown on such land which may reasonably be expected to contain residues of such substance or mixture) shall be destroyed or consumed only by experimental animals unless a tolerance or exemption from tolerance has been established.

- more than one surface-acre of water involving use of a particular substance or mixture of substances against a particular pest, provided that (i) waters which are involved in, or which are affected by, such tests will not be used for irrigation purposes, drinking water supplies or body contact recreational activities and (ii) that no such tests may be conducted in any waters which contain, or which affect, any fish, shellfish or other plants or animals taken for recreation or commercial purposes and used for food or feed unless a tolerance or exemption from tolerance has been established.
- (3) Animal treatments Tests conducted only on experimental animals. No animals may be tested if they may be used in food or feed unless a tolerance or exemption from tolerance has been established.
- (b) The above examples are not meant to be all inclusive nor to preclude testing in larger areas or larger numbers of units if the intended use falls within the meaning of 172.3 (a). Tests which do not come within the above examples will not be presumed to fall within the meaning of 172.3 (a) and the presumption will be that the test requires an experimental use permit.
- (c) Use of a registered pesticide in a test being conducted to determine its pesticidal value for a use not set forth on the label and where the requirements of 172.3 (a) above are met shall not require an experimental use permit.

- (d) No experimental use permit is required for a substance of mixture of substances being put through tests: for the sole purpose of gathering data required for approval of such substance or mixture under the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 301) as:
 - (1) A "new Drug"
 - (2) A "new animal drug"
 - (3) An "animal feed" containing a"new animal drug"

Paragraph (d) of this section shall not apply when a purpose of such test is to accumulate information necessary to register a pesticide under section 3 of the Act.

The second item is an EPA Pesticide Enforcement Policy Statement No. 1 titled "Use of Registered Pesticides at Less than Label Dosage Rate" which appeared in the Federal Register, Volume 40, No. 87, Monday, May 5, 1975.

The Agency has determined that an application or use of a registered pesticide at a lower dosage rate than that recommended on the accepted label will be permitted if such application or use (a) is recommended in writing by a knowledgeable expert, (b) is efficacious against the target pest, and has only beneficial effects to man and the environment, (c) is performed in accordance with all other label instructions and precautions, and (d) is not repeated at the low dosage rate so frequently as to result in a total pesticide dosage higher than that specified on the approved label.

This policy statement shall apply to the following areas of pesticide use: Agricultural pest control, animal pest control, forest pest control, right-of-way pest control, ornamental and turf pest control, seed treatment, aquatic pest control, industrial, institutional, structural and health related pest control, public health pest control, mosquito control, regulatory pest control, and demonstration and research pest control. Notwithstanding the above, the application or use at a lesser dosage rate of a rodenticide, termite control product or antimicrobial agent such as a disinfectant or sanitizer under any circumstances is prohibited. All of the limiting and defining provisions contained in the paragraphs which follow are an integral part of this policy statement.

Applicability of the Pesticide Enforcement Policy Statement Regarding Lesser Dosages - Recommendation of Knowledgeable Expert

A pesticide applicator or user may apply a registered, pesticide at a dosage rate less than that which appears on the accepted label only if the application or use is recommended in writing as safe and efficacious by a recognized expert in pest control practices. This recommendation may be made in a general statement or published document issued by an appropriate State or Federal official or as part of a program developed by an independent and qualified pest management specialist. This written recommendation must be in the possession of the applicator or user prior to the

application or use, and must be made available to an official representative of the Agency upon request.

Recognized authorities in the field of pest control are often employed by organizations such as State Cooperative Extension Services, Federal or State departments or agencies, State and Federal Public Health Services, Independent pest management specialists and pest management consultants are also considered to be competent to offer advice regarding dosage rates which will be safe and efficacious in particular environmental circumstances. These recommendations may be made through current scientific journals, textbooks, manuals, technical bulletins or by specific written instructions from a qualified person to the individual.

Responsibility for the safe and efficacious use of the pesticide and for full compliance with the terms of this Pesticide Enforcement Policy Statement may rest with either the user or the recommending expert, or both, as the equities of the circumstance may require. It must be recognized, however, that the Agency has neither assessed nor approved the efficacy of the pesticide application or use at a lower dosage rate.

Product Efficacy and Harmful Effects

The Agency will construe any application or use at less than the label dosage which his inefficacious or which is in any way harmful to man or the environment to be a use inconsistent with the labeling as prohibited in the Act.

Enforcement action will be taken on a case-by-case basis

for such violators where repeated abuse of this policy or

continued harm to man or the environment has occurred.

An application or use is inefficacious if it results in the control of substantially fewer pests than is normally associated with pesticide use in comparable environmental circumstances or than is intended. The efficacy of any particular pesticide application or use may depend upon the genetic composition of the target pest, pest population dynamics, environmental circumstances, geographic and climatic factors, and the presence of beneficial insects or other organisms.

Directions for Use and Other Precautionary Labeling

Acceptability of a lesser dosage rate in no way alters or modifies any other label provision or direction for use. Label provisions which must be complied with at all times (regardless of the application dosage rate) include but are not limited to statements regarding product mixing, loading and preparation, application methods, re-entry standards, protective clothing or equipment, product and container transportation, storage, and disposal, warning statements, and the minimum application interval before harvest.

No label instruction which <u>affirmatively prohibits</u> use of a <u>lesser dosage</u> may be violated. A pesticide application at a dosage rate which contradicts a specific label minimum dosage rate will be considered to be a violation of the Act.

While dosage rates less than the label levels are considered acceptable, any application or use of any registered pesticide at a dosage rate above the label level is strictly prohibited and will subject the user to criminal or civil penalties. In situations where target pests no longer be controlled with label recommended levels because of pest resistance or other reasons, it will be necessary for the registrant to petition the Agency for an appropriate amendment of the registered labeling. This action is necessary (1) to ensure that proposed increases in label dosages are properly evaluated in respect to human or environmental hazards as required by the amended FIFRA or (2) to determine if the proposed actions may violate tolerance regulations for food or feed crops established under authority of the Federal, Eood, Drug and Cosmetic Act (FFDCA) Total Pesticide Dosage

This policy which allows the use of lesser dosages in no way permits the application or use (by frequent or repeated applications) of a greater total quantity of pesticide within a period of time where specified on the approved label.

The third item is about EPA policy concerning tank mixes and serial applications.

Pesticide Regulatory Notice 73-1 indicates there have been many questions raised with respect to tank mixes (combinations of two or more pesticides in the spray tank at time of application) and serial application of one pesticide immediately or shortly following the application of another, as the practices relate to use inconsistent with the label.

Tank mixes and serial applications may fall into one of several categories:

- Category 1. Instructions provided for such use on one or more labels of EPA registered products;
- Category 2. Such use may be covered by an intra-state registration.
- Category 3. Various tank mixes and serial applications have been tested and recommended by

 Agricultural Experiment Stations, State

 Departments of Agriculture or are common agricultural practices.

Tank mixes or serial applications recommended on EPA labels

(Category 1) are obviously consistent with the label and do not

Constitute use inconsistent with such label.

Tank mixes and serial applications registered by a State (Category 2) will not be deemed uses inconsistent with the label.

Finally, the legislative history of the amended FIFRA clearly shows that the Congress intended EPA to apply the test of reasonability in enforcing misuse provisions. From this point of view, during a transitional period while parties adjust to the new law, tank mixes and serial applications in Category 3 will not be deemed use inconsistent with the label if:

- (a) the products in the mix are applied at a dosage rate not to exceed the label instructions for use of any product in the mix used singly for the same set of pests on the same crop; and
- (b) the label on one or more of the products does not explicitly instruct against such mixture.

It must be recognized under Categories 2 and 3, that EPA has not reviewed any efficacy or human and environmental safety data on the combination of products and the user applies them in this manner at his own risk with respect to effects on crops and application equipment, applicator safety, environmental effects and tolerance pre-harvest intervals. The policy of deeming such use not inconsistent with the label, must not be construed as EPA approval of the use.

If adverse effects are observed rom any particular tank mix or serial application, EPA may take appropriate action to rule the use of such specific mix or serial application to be inconsistent with label instructions on a case-by-case basis. The Agency will be watchful for any adverse effects that might accrue from any of above methods of application-

The first item, "Experimental Use Permits" will place a new wrinkle for those obtaining research and development data and for those using such pesticides in demonstration efforts. Those persons who recommend in writing the use of registered pesticides at less than label dosage rates, pesticides combined in tank mixes or serial applications of pesticides now can evaluate their own role in these matters. The user has the initial responsibility, however, if he points to you, will you be able to justify your actions?

GUIDELINES FOR MINIMIZING PESTICIDE POLLUTION

When Pesticides come Pollutants

Pesticides, when properly used, are tools. When they move off target or are otherwise misused, they become pollutants. They would not be much of a problem if they stayed where applied but the widespread distribution of DDT and similar compounds demonstrates that many pesticides do not remain where applied and do remian in the environment for relatively long periods of time.

Pesticides become particularly important as pollutants when they move into water and cause either immediate toxicity to organisms present or, more seriously, are of a persistent and accumulative nature and move into the food chain where they upset the normal life cycle of organisms; in such ways as destroying reproductive capacity, making the organism more vulnerable to predators by slowing the escape mechanism, or even by acutely poisoning the predator at the end of the food chain.

But areas other than water are also subject to pesticide contamination. When Sevin is sprayed on a field where bees are foraging on weed blossoms, the beekeeper considers it a pollutant. When 2,4-D drifts from the highway to injure or kill grapes, it is a pollutant. And the lindane illegally used to treat dairy cows becomes a pollutant when it shows up in the milk.

How Pesticides Move Off Target

Pesticides may drift away from the target. Many factors contribute; some physical, some climatic. The smaller the spray droplet, the further it will drift. And, obviously, the stronger the wind, the greater the drift.

The choice of pesticides influences drift damage from toxicity, phytotoxicity, illegal residues, and volatilization. Choice of the proper formulation will reduce drift as will use of thickeners. And choosing the right machinery for a particular job is most important.

Pesticides adhere tightly to soil particles. Consequently, any type of erosion -- runoff or sheet erosion, or wind erosion -- transports the pesticides along with the soil particles. Conversely, cultural practices that prevent soil erosion also prevent pesticide movement and pollution.

Because of the tight adsorption to soil particles,
leaching into ground water is not a particularly significant
means of pesticide transport and contamination.

Pesticide residues on foods, both illegal and within tolerance limits, may be further distributed by humans and animals who consume the food and excrete the pesticide either directly or as a contaminant of meat, eggs, or milk.

Poor choice of a pesticide for a given problem increases pollution. In most cases a short-lived, biologically degradable, non-accumulative compound may be substituted for a persistent, accumulative, environmentally dangerous compound. The use of DDT for a mosquito larvicide over the highly active modern biodegradable larvicides would be a bad choice, even if it were not now illegal.

The careless operator hurts himself, his customers, and his environment through poor location of sprayer filling stations, slipshod tank filling procedures, insufficient mechanical safeguards against contamination, accidental spills, and poor disposal of left-over mixed spray, surplus pesticides, and used containers. Poor operational procedures and misuses are probably the greatest contributors to pesticide pollution.

Being aware of these sources of pollution one then should be able to come up with practical solutions based on existing methods and materials which will greatly minimize the contribution of agriculture, and other users, to pesticide pollution of our environment. The following are some practical considerations. Those presented are by no means complete, but are given as examples and to stimulate further preventative practices.

A Checklist for Practical Solutions to Pesticide Pollution

- I. Is the treatment necessary? First make sure you have a control problem. Many urban or suburban applications are not necessary.
 - A. For example, oak leaf skeletonizer occurs late in summer when leaves are soon coming off anyway, so little is gained by spraying.
 - B. In agriculture, is the pest numerous enough to cause economic damage? Will the increased production pay for the cost of treatment? What are the alternate methods of control? Maybe the application should not be made.
 - C. Will crop rotation or other cultural practices solve the problem?
- II. If treatment is necessary
 - A. Consider other problems beside control -- sensitive crops, streams, people, houses, bees.
 - B. Consider public relations -- an informed public is more cooperative. Be as inconspicuous as possible.

- III. Steps that reduce pesticide pollution
 - A. Prevent drift
 - The smaller the droplet and the greater the wind, the further the pesticide will drift.
 - 1. Plan the farm or field layout.
 - a. Consider prevailing winds to minimize drift.
 - b. Lengthen fields, lower hedgerows, removeobstructions. #
 - -- Reduces turn arounds and overlapping of pesticides.
 - -- Allows agricultural aircraft to remain low, minimizing drift.
 - c. Consider crop pesticide requirements.
 - little or no pesticide use nearest sensitive areas -- houses and farm buildings, ponds and streams, bee yards, pastures and forage crops.

 Leave buffer areas such as crops not requiring treatment or requiring only safer materials, or leave hedgerows between crops and sensitive areas.

 The border rows of a crop can be treated with safer materials.

- with high pesticide requirements
 adjacent to or close upwind from crops that
 are sensitive either from phytotoxicity or
 residue standpoint. For examples, if
 2,4-D is to be used on corn, do not plant
 beans or tomatoes adjacent.
- d. Do not place pastures next to crops requiring several pesticide applications such as fresh market sweet corn or an orchard.
- 2. Choose equipment that will minimize drift.
 - a. Ground equipment -- slower, but less chance of drift than aerial equipment.

Boom equipment

- -- Use lower pressures and spray discs with larger orifices to increase droplet size.
- -- Choose best type of nozzle. Hollow cone nozzles produce more fine droplets than flat fan nozzles.
- to reduce wind effects. Use closer nozzle spacing and wider fan angles.
- -- Position boom to give larger droplets
 as ground speed increases.

Tilted forward gives finer droplets.

Tilted backward gives larger droplets.

-- Be sure machinery is properly calibrated -- not overdosing.

Airblast equipment -- more chance of drift than with boom equipment.

- -- Determine effective swath width and calibrate. Lay out field accordingly.
- -- Operate in little or no wind. Not only will wind cause drift, but it will distort the swath pattern.
- -- Choose time to operate when drift is away from sensitive areas.
- -- Position nozzles to give larger droplets.

 Facing into air blast gives finest
 droplets.

Directed with air blast gives coarsest droplets.

- -- Lower pump pressures give larger droplets.
- -- When spraying near sensitive areas be sure airblast is directed away.
- b. Aerial equipment will get the job done quickly and economically taking advantage of best weather conditions.

- -- Use higher dosages per acre, larger droplets. Ultra low volume will increase chances of drift.
- -- Mount nozzles away from wing tip so
 that spray is not sucked into vortices.
 Solid cone or fan nozzles form larger
 drops than hollow cones.
- -- Position boom to give larger droplets.

 Tilted slightly forward gives
 finest droplets.

 Tilted backward 40 to 90° gives
 coarsest droplets.
- -- Use lower pump pressures for larger droplets.
- -- Be sure your shut-off is positive -- no dribbling in turns. Use positive shut-off nozzles.
- Consider new machinery such as controlled droplet size booms, controlled porosity spray heads, foam forming nozzles.
- -- Fly as low and slow as possible consistent with good spray technique.

- -- Fly downwind from sensitive areas -if you must fly upwind from sensitive
 areas, fly with the wind or into it.
 Arrange swaths at right angles, not
 parallel to streams.
- 3. Choose the right pesticide and formulation to minimize drift problems.
 - a. Use the safer chemical according to the circumstances. Examples:
 - Parathion is generally less
 toxic to fish than malathion,
 but much more toxic to humans.

 Does the alfalfa field border
 a stream or is it near a house?

 Are fences tight? Will cattle
 break in? If there is a chance
 of this, don't use parathion.

 If the alfalfa is weedy and
 dandelions are in bloom and
 attracting bees, Sevin is a poor
 choice.
 - -- If beans or tomatoes or other sensitive crops must be planted adjacent to

corn use atrazine rather than 2,4-D.

But remember, high doses of atrazine may injure sensitive crops planted the following year, i. e. oats, alfalfa, vegetables.

b. Choose the right formulation.

- -- Sprays drift less than dusts.
- -- Granules drift less than sprays.
- and used under some conditions such as power line maintenance, roadside spraying, etc.
- 4. Do the job at the proper time.
 - a. When weather conditions are right.
 - -- Low wind; away from sensitive areas.
 - -- Rain not expected.
 - b. Bees not foraging -- night or early morning.
 - c. Allow for sufficient harvest intervals to avoid residues.
 - d. Allow for sufficient interval between application and time workers have to be in the field.
- B. Prevent Erosion

Pesticides ride along on eroding soil particles.

1. Cultivate with the contour, not across it.

- Alternate cultivated crops such as corn with others such as oats, alfalfa. Leave sod buffer area, settling ponds, or dikes between cultivated crops and stream. Other things being equal, there is very little pesticide run-off from orchards with a sod floor.
- 3. Plan location of high pesticide requirement crops with topography in mind. Don't plant such crops where farm ponds, potable water supplies, etc. are further down the drainage system.
- C. Prevent Transport of Pesticides as Illegal or Persistent Residues on Foods
 - 1. Use all pesticides only as labeled paying attention to dosages, limitations, and making sure that the use intended is on the label.
- D. Choose Safest Pesticide to be Used Under Circumstances
 - Points to consider
 - a. Phytotoxicity -- will it hurt the target if overdosed? What is its compatibility with other pesticides used?
 - b. Legal residues -- will the pesticide drift from target crop to cause illegal residue on adjoining crop, or in meat or milk?

- Persistence -- is the pesticide one which will persist in the environment, and either accumulate in wildlife or be damaging to following crops?
- d. Bee toxicity if bees are working a field, choose a pesticide of low bee toxicity and time application when bees are not present.
- e. Fish toxicity -- if drainage or erosion threatens nearby waters, choose pesticides having low toxicity to fish.
- f. Human and domestic animal toxicity if located near houses or buildings or water supply.
- g. Effects of drift or volatility -- will

 it drift from the target crop to harm

 send tive crops? Foul smelling pesticides

 may draw attention and criticism.
- h. Effect on wildlife from use of persistent, accumulative chemicals -- cost should not be the most important factor. Don't use accumulative pesticides as aquatic larvicides. When there is a choice use the least persistent chemicals.

- E. Use Good Operational Procedures
 - 1. Filling the tank poor procedure is a prime source of pesticide pollution.
 - a. Locate and construct filling station properly
 - Away from pond or creek bank swithat surface drainage is not back into water source.

Or with established stations:

- -- Regrade to change slope and drainage away from water source.
- -- Construct an apron and sump to catch overflow and drainage for safe disposal.
- b. Use proper tank filling equipment.
 - -- Use separate pump for filling where possible:
 - -- Install check valves on intake hose
 to prevent back-sphoning from sprayer
 tank, particularly if the same pump
 is used for both spraying and filling.
 - -- Suspend filler hose from pump so that there is a space between end of hose and surface of spray mix in full tank to prevent back siphoning.

- c. Use good filling technique.
 - -- Stay with sprayer while filling.

 Don't let it run over while your back is turned.
 - -- Protect yourself with proper gear as instructed by the label.
 - -- Use minimum amount of pesticide
 necessary. The label will give you
 the range. Follow recommendations -more won't work better.
 - -- Before adding the pesticide, make a final check. Is the intended use specified on the label? Is the wind still down?

 Are other conditions still favorable?

 Account for all empty pesticide containers and take them back to your storage. Don't leave them on the bank to fall in the water.
- d. Use good application techniques.
 - -- Use required protective gear (see label).

 Investigate filtered air equipment -helmets, tractor cabs, agricultural
 aircraft cockpits. Have water and
 commercial handcleaner on the sprayer

- in case of accidental contact with spray.
- check constantly for drift, overdosing, unauthorized persons in treated area, other poor conditions. Stop spraying if necessary.
- treat in case you have spray left
 over. Do not leave puddles of spray
 mix or dump indiscriminately.

Adapted from the Cornell Fact Sheet #4-86, Dated June 7, 1971, by J. E. Dewey and R. F. Pendleton

AGRICULTURAL SPRAY ADJUVANTS

The discovery, a few short years ago, that spectacular improvement in the performance of many foliage applied herbicides was possible when certain surfactants were included in the spray solution, firmly established at least one role of the agricultural spray adjuvant in improving the efficiency of pesticide chemicals.

Since then, we have been besieged by a whole gamut of surfactants and other additives, of varying effectiveness, from which the investigator, applicator, or grower must choose the proper product for his particular application.

It is from this mass of confusion over what surfactants are, what adjuvants are, and which one do you use when and where, that we must try to provide some order and understanding.

It is particularly timely now with avid public interest in, and Federal scrutiny of, chemical usage and its relationship to the environment, providing additional pressure to improve our efficiency in the use of agricultural chemicals.

The remainder of this discussion will be presented to include definitions, functions of spray adjuvants, and a product list of adjuvants suitable for providing these functions.

38

DEFINITIONS:

Adjuvant

The dictionary defines "adjuvant" as a "substance added to a prescription to aid the operation of the main ingredient." A spray adjuvant performs this function in the application of an agricultural chemical. An effective spray adjuvant may be formulated to contain one or more surfactants, solvents or co-solvents, solubilizers, buffering agents, film formers, and other components to provide the properties listed under "Functions."

Surfactant.

A surfactant is a "surface active agent." Its primary function is that of a wetting agent or as a component of an emulsifier or a spray adjuvant. Some surfactants have been used successfully to enhance herbicidal activity.

Ions

Many water-soluble materials, when dissolved in water, split apart into electrically charged atoms or groups of atoms called ions. The ions with the negative charge are called anions and those with the positive charge are cations.

Anionic

The surfactants, whose negatively charged ion provides the surface active properties, are called anion-active or anionic.

e.g. Sodium (lauryl sulfate)

Cationic

Those surfactants whole positively charged ion provides the surface active properties, are called cation active or cationic.

e.g. (Coco amine) + acetate

Nonionic

As the name implies, nonionic surfactants do not ionize in water and are therefore, non-ion active or nonionic.

e.g. ethylene glycol, alcohol, alkylarylpoly (ethylene oxy) ethanol

Functions of Spray Adjuvants

A spray solution may have one or more of the following functions to perform in order to provide a safe and effective application:

- 1. Wetting of foliage and/or pest.
- 2. Modifying rate of evaporation of spray.
- 3. Improving weatherability of spray deposit.
- 4. Enhancing penetration and translocation.
- 5. Adjusting pH of spray solution and deposit.
 - a. prolong life of alkaline sensitive pesticides
 - b. reduce re-entry time following application of hazardous chemicals
- 6. Improving uniformity of deposit.
- 7. Improving compatibility of mixtures.
- 8. Providing safety to the treated crop.
- 9. Reducing the drift hazard.
- 10. Complying with FDA requirements.

The following brief discussion of each of the above ten points may be helpful in clarifying the many functions performed by the proper spray adjuvant.

1. Wetting of foliage and/or pest

Adequate wetting is required to provide good retention and coverage of spray solution. A suitable surfactant, at the proper concentration,

will normally suffice, although certain plants and pests may have special requirements.

2. Modifying rate of evaporation of spray

The need for reducing the rate of evaporation of a spray solution applied at two to three gallons per acre in a hot dry area is obvious. The need, however, may be equally great in the application of a concentrate spray in an orchard. Once the spray has been applied it may be desirable to have the spray dry as rapidly as possible. Both functions can be performed by a proper adjuvant.

- 3. Improving weatherability of spray deposit

 Resistance to heavy dews, rainfall, and sprinkler irrigation can mean the difference between successful control and failure of a fungicide application, for example,
- A. Enhancing penetration and translocation

 Many chemicals perform most effectively when they have been absorbed by the plant and transported to areas other than the point of entry. "Systemic" pesticides have this ability.

 Their absorption can be enhanced and certain non-systemic chemicals can be made to penetrate

plant cuticles through the use of a suitable adjuvant.

Translocation is included as part of the systemic performance although I'm aware of no documented evidence to show that translocation is enhanced through the use of an adjuvant.

5. Adjusting pH spray solution and deposit

- a. Many currently used pesticides (primarily organic phosphates and some carbamates) degrade rapidly under even mildly alkaline conditions, found in some natural waters and on certain leaf surfaces. Buffering adjuvants can prolong the effective life of alkaline sensitive chemicals under these conditions.
- b. Experimental adjuvants are currently under test for reducing re-entry time following application of highly toxic pesticides.

6. Improving uniformity of deposit

It is almost axiomatic that, with non-systemic pesticides, the quality of performance of a pesticide can be no better than the quality of the spray deposit. This is particularly true of most fungicides which require complete and uniform coverage.

7. Compatibility of mixtures

With the savings in labor costs to be obtained from doing more than one job with a single application, the effort is made frequently to mix various combinations of pesticides, and pesticides with liquid fertilizers in the same spray tank for simultaneous application. The attendant compatibility problems can frequently be corrected with the proper adjuvant.

8. Safety to crop

Certainly we do not wish to harm the crop which we are trying to protect. This often happens, however, with chemicals that are potentially phytotoxic. The hazard can be increased through the use of the wrong adjuvant or substantially reduced through the choice of a proper one.

9. Drift reduction

No method, currently in use for reducing drift of pesticide sprays, is entirely satisfactory. The most promising of the new approaches to drift reduction is the use of special foaming adjuvants applied through foam generating pumps or nozzles, often from conventional aerial or ground equipment. Special application problems may still favor spray thickeners or invert emulsions.

10. FDA approval

The Code of Federal Regulations, Title 21, Part

121.102, exempts from the requirement of a tolerance
those adjuvants, identified and used in accordance
with 120.1001 (c) and (d) which are added to
pesticide use dilutions by a grower or applicator
prior to application to raw agricultural commodities.

All spray adjuvants must comply with these requirements

The functions and properties of spray adjuvants listed above can contribute substantially to safe and effective pest control. Any one of the functions may be important in a given application. It is not likely that all would be of concern in a single application.

Although a single adjuvant may provide more than one of the above properties, no single product can provide them all. As a result, there are a variety of spray adjuvants available which have been formulated to encompass those functions which are important to a particular type of application.

The agricultural spray adjuvant is one more useful tool for improving the effectiveness of pest control and the safety of chemical appliation and, as with any chemical, only the proper spray adjuvant will do the proper job.

In part from Washington Pest Control Handbook, Washington State University, Washington State Department of Agriculture, November 1, 1971, pps 177-181.

WHEN APPLIED TO PLANTS, ANIMALS, AND SOIL

INTRODUCTION (Dr. N. E. Lau)

This program is about some of the variables which can determine how well your pesticide application will manage a pest population. These variables can be a factor on how much service you will obtain for your dollar investment in pesticides. Many pesticide labels give instructions about certain conditions that may exist when applying pesticides. Do not ignore these. They can cost you money. Remember, read the entire pesticide label and understand it before you apply pesticides. If you are not sure what it tells you, please contact your local extension agent or your pesticide dealer for assistance.

VARIABLES EFFECTING THE EFFECTIVENESS OF PESTICIDES (Dr. C. R. Drake

The world food reserve is decreasing annually. For example, there were 95 days of world food reserve in 1961, but the reserve decreased to 24 days by 1974. The decrease in world food reserve is due, in part, to the vast increase in world population and, in part, to the greater demands for better nutrition throughout the world. For example, the world population was 250,000,000 at the time of the birth of. Christ. This number doubled by 1600 A.D. and steadily increased to 3 billion by 1965. It has been postulated that this number will double by the year 2000. There is a net increase of 76,000,000 souls annually that requires 20,000,000 additional acres of land to feed the net increase in population.

There are three methods by which the world food reserve may be improved. One is by using high yielding seed to a better advantage. A second method is by using more and better fertilizer. Unfortunately, the countries that need more and better fertilizers do not have good financial backing in the major countries that produce and provide fertilizers.

The third method of improving world food reserve is through better pest control. It has been estimated that 1/3 of the world's plant food is lost to pests. Presently, the majority of the work on plant pest control is with the use of pesticides.

Everything being equal, the results that one obtains from the use of pesticides on plants to control pests should be desirable when they are used as recommended. On the other hand, however, if pesticides are used other than for what they are recommended and applied differently than the prescribed method, then the results obtained therefrom would be questionable. Many years of work and as much as 10 million dollars have gone into the selection and the development of a pesticide to control a specific pest problem. Therefore, the grower or the commercial pesticide applicator should always read and study the label, so that he is thoroughly familiar with the nature of the pesticide and what it is recommended for, before it is applied on the target plant.

There are several factors that affect the effectiveness of pesticides for plant pest control. For a matter of convenience for discussion, these factors may be called physical, mechanical, environmental, and biological.

First, I would like to discuss the physical nature of pesticides and how they may influence the effectiveness of the pesticides to control the target pest. Pesticides may be solids and mixed with inert ingredients and applied as a dust or mixed with a wetting agent, suspended in water, and applied as a spray or a few are liquids and are mixed with water and applied as sprays. The liquid pesticides frequently have an emulsifier and a solvent that they are dissolved in. These solvents and/or emulsifiers frequently cause problems when they are mixed in the spray tank with other pesticides.

This is particularly true with some oil-based solvents. For example, if a certain insecticide that has a strong oil-base solvent is mixed with captain, a wettable powder fungicide, that is not compatible with the particular oil solvent, than the latter may go through a process of buttering-out and become inactive or it may be changed to a compound that is phytotoxic. Thus, the mixture would be a liability rather than an asset if applied to the target plant. It is absolutely essential that intended mixtures be tested for compatibility before they are applied to large acreages.

Many plant surfaces are hard to wet, thus, for satisfactory results when applying certain pesticides a wetting agent or surfactant should be used. Many weeds are extremely hard to wet; therefore, surfactants may be required for satisfactory weed control. One should be careful, however, when using wetting agents or surfactants. Some pesticides have the correct amount of wetting agents incorporated with the pesticide, and the addition of still more wetting agent would cause excess foaming in the tank and run-off of the active ingredient from the leaf surface. Therefore, always follow the instructions on the label and the recommendations from yourLand Grant University

There are several ways that the mechanical aspects of the spray equipment will affect the efficiency of pest control. No pesticide applicator equipment, regardless of the cost, is more effective than the operator of the equipment. The results obtained with a \$20,000 piece of spray equipment with a sloppy operator "will not be" as effective for pest control as with a piece of equipment that costs 1/2 or even 1/4 as much that has a conscientious, common sense operator. Thus, the operator becomes the key of success or failure. Low volume spraying requires exactness in application. A mistake when spraying at 10% becomes \$2-1/2\$ times greater than when the same mistake was made at 4% concentration. Therefore, a conscientious, responsible operator is economical when one is applying low volume sprays.

There is no substitute for a properly calibrated sprayer. The machine is either calibrated of it is not. There is no in between. A sprayer should be checked frequently to determine if it is actually spraying out the prescribed amount of active ingredient. It is equally important that the sprayer be delivering the correct amount of toxin

from the designated nozzles. It is expensive and extremely disappointing to find that approximately 1 bushel of peaches from your trees has brown rot simply because you, as the owner, failed to check on calibration and 2/3 of the active ingredient was being discharged through the 4 lower nozzles rather than the proper 4 upper ones. Thus, careless mistakes cost extremely high and greatly reduce the net profits. All mechanical pesticide application equipment should be checked daily for general function.

The "environment" is a major factor that influences the effectiveness of pesticides that are applied to plants. If a rain occurs before the pesticide is dry it will wash off and the application must be repeated. Similarly, a long prolonged rain will result in pesticide erosion and short residual life of the pesticide.

Extreme temperatures also influence the activity of certain pesticides. Oil, for example, should never be applied when the temperature is expected to be above 85° or below 35°F. Oil will frequently cause severe phytotoxicity when applied with prevailing incompatible temperatures. Liquid pesticides should never be permitted to freeze during winter weather unless it is specified on the label that activity is not altered by freezing. I have had experience with the use of liquid parathion that had been frozen. The results were extremely damaging with more of the characteristics of a herbicide that that of an insecticide.

One should always be careful when applying herbicides to areas that are subject to overflows. Under these conditions the herbicide may be washed to an untreated area and kill non-target plants. These conditions would be expensive and similarly the kill of the target plants would be reduced.

Wind and strong air currents are nightmares to pesticide applicators. This statement is true whether working with mircraft or ground equipment. Coverage of the target is severely reduced when pesticides are applied during 10 to 20 mph wind currents. Thus, more material is required to cover the target and a greater liability exists as far as drift to non-target plants. The principle of not spraying during 10 to 20 mph wind storms must be thoroughly understood. The pesticide effectiveness is greatly reduced, drift hazzards to non-target areas are extensive and the possibility of a pesticide accident is quadrupled. Therefore, apply sprays when the wind velocity is below 10 mph, preferably much less.

The biological factor cannot be over emphasized in a well developed pesticide program. In other words, the commercial pesticide applicator or the grower, must be somewhat knowledgeable on the nature of plant pests. He must have a general concept of the life cycle of a specific insect or a disease cycle of a disease that he is trying to control. Every pesticide application made when there are no pests present increases the cost of production and reduces the profit margin. Growers should have a general knowledge that powdery mildew is most severe in dry weather; apple scab is most severe during cool, wet weather; and that a drought during the primary infection period will break the scab disease cycle. Similarly that plant mites are more destructive during a hot, dry year than during a wet one.

It was determined in California that 11 applications of streptomycin was applied to pears for fire blight control before the fire blight bacteria were actually present. Thus, the cost of pest control was excessive. Careless use of pesticides such as excessive applications, frequently lead

to tolerance or resistance by the target pest. Be familiar with the crop you are trying to produce, know what pests attack the crop and when they should be controlled. Do not apply a pesticide haphazzardly.

Generally speaking, pesticides have a good effective margin formulated into them to offset the physical, mechanical, environmental, and biological factors that reduce their efficiency in pest control. Therefore, if one uses good common sense when applying pesticides they can expect a reasonable return on their dollar invested.

EFFECTIVENESS OF PESTICIDES APPLIED TO THE SOIL (Mr. A. H. Kates)

Many factors influence the effectiveness of a pesticide. You have heard many of the factors associated with applications to the plant. Any chemical applied to the soil surface loses some of its potential pesticidal activity due to fixation on soil particles, leaching, volatilization from the surface, photodecomposition and microbial

decomposition. These losses are taken into account with the recommended rates of pesticides. They allow sufficient material to give maximum pest control and at the same time minimize soil and crop residues. Many of the pesticide losses can be associated with soil characteristics.

Soil is a product resulting from the disintegration and decomposition of rocks and of organic materials. With Virginia's temperature and climate conditions, the soils are largely an accumulation of finely divided relatively insoluble mineral residues from the parent rock. The soil particles are of various sizes. The organic matter is relatively low throughout Virginia. The various size soil particles and organic content will impart certain characteristics to the soil. These characteristics have a definite bearing on how the pesticide will react

when placed on the soil surface.

Growers often describe their soil as light, medium, or heavy. This is usually a comparison of soils on their farm or in the immediate vicinity. The growers description of a heavy soil in the coastal plain area is often quite different from the description of a heavy soil in the Piedmont or Mountain area. A more precise recommendation could be made if the amount of sand silt, and clay are known.

Mechanical analysis procedures are available which will divide the various size soil particles into the various types, sand, silt, and clay. Soil particles more than 2 millimeters in diameter are usually classified as gravel or stone and are not usually included in an analysis of particle size. Particles under two millimeters are divided into three major Sand has particles of 0.05 to 2 millimeters in diameter. The next smallest size is silt which has particles of 0.002 to 0.05 millimeters in size. Clay has particles less than 0.002 millimeters The percentage of sand, silt, and clay in size. determine the texture of the soil. The soil texture is very important in pestigide activity or loss.

The larger particles; stone, gravel, and sand react as individuals. Soils high in these particles usually transmit air and water readily. Their retention of fertilizer, chemicals, and water is low. Most of the chemical and chemical-physical reactions in soil take place at the surface of particles. The surface area of this portion of the soil is relatively small; therefore the activity on the surface is low.

Silt particles are intermediate in size than those of sand or clay. Being smaller in size, they have, greater surface for a unit volume of soil; therefore, they exhibit greater chemical activity than sand, but not as great or as important as clay.

The clay portion of the soil is the one which contains most of the important properties of the soil. Their size would dictate that there would be a high surface to volume ratio. For example, if one acre contained particles one mm in diameter there would be a total internal surface area of 500 acres. Whereas, if the same acre was made up of particles of 0.001 mm, there would be a total internal surface acre of 1,000,000 acres. I-11 repeat, most of the chemical and chemical-physical

action in soil takes place at the surface of the particles. Besides this greater internal area, the chemical composition of the clay and the arrangement of their chemical elements on the particles imparts a negative charge to the particle. This negative charge causes the clay particles to attract positive ions of certain elements and chemicals. All chemical compounds when going into solution will ionize (negative and positive ions produced).

Positive ions of progen, calcium, magnesium, and potassium are held in a state of dynamic equilibrium with similar ions in a soil solution. These ions can be replaced or exchanged in the soil solution in response to change in concentrations in the soil solution.

Some ions are held tighter to the clay particles and can be removed from the soil solution completely.

All pesticides are partially soluble. In solution, ions with positive and negative charges are formed.

Depending upon the strength of this charge, the efficacy of the pesticide can be altered. This would depend on whether they are held tightly to the clay particles or in equilibrium with the

soil solution or not attracted by the clay ion at all.

The charged clay surface together with their associated exchangeable ions also react with water molecules. These impart the characteristics of plasticity, cohesion, and shrinkage to soil. These physical characteristics of the soil have a direct effect on the east of and degree of incorporation necessary for pesticides. mediate products in decomposition of plant residues also contribute to this colloidal system. Colloids refer to organic and inorganic matter having very small particles and a corresponding very large surface area for the unit of mass. Most colloids are too small to be seen with an ordinary compound microscope. Soil colloids do not go into solution as sugar or salt do. They may be dispersed to a relatively stable condition and thus be carried by moving water. The organic colloids work similar to the clay particles. They also can have a definite affect on creating aggregates of clay, which in turn makes the soil more workable.

The sand, silt, clay, and organic particles occupy roughly one-half the total volume of soil. The

remaining space, void between these particles is called the pore space. This is occupied by water and soil air. The pore size distribution is strongly affected by aggregation of the soil particles as well as by soil texture. Infiltration and movement of water or chemicals in solution through the soil therefore is greatly influenced by soil structure. Water and air occupy the soil's pores in reciprocally varying amounts. The amount of water in the soil's pores will determine how far and how fast applied pesticides will move in the soil.

Pesticide leaching is the downward movement of substances in solution through the soil. In most cases when a pesticide is applied to the surface, the movement of the chemical to the pest area is dependent on leaching of the pesticide. The extent to which a pesticide leaches is dependent primarily upon: (1) solubility of the pesticide in water; (2) amount of water passing through the soil; and (3) absorptive relations between the pesticide and the soil.

In general, those pesticides which are completely water soluble are expected to be most easily leached. This is not always the case. Some of the

water soluble herbicide may react with the clay and organic colloids and be taken out of the soil solution completely. The solubility of a pesticide in water is never a true indication of how it will move through the soil. The chemical concentration of the material when it is in solution is in direct relation to the absorptive power of the soil. The strength of the absorption in relation to the particular pesticide is considered just as important as the water solubility in determining the leaching ability of a particular pesticide.

The amount of water passing down through the soil will affect almost all pesticides in the distance it will leach. If a pesticide is applied on a felatively dry soil, followed by rain or irrigation, the chemical will leach farther than if the soil were wet at the time of application. To restate the point, the strength of absorption bonds is considered just as important as water solubility in determining the leaching of a particular pesticide.

Pesticides have been known to move upward in the soil. If water evaporates from the soil surface, water may move slowly upward in the soil. The water may carry with it the soluble pesticides. As the water evaporates, the herbicides are deposited on the soil surface.

Whether the pesticide is applied on the soil surface or moves upward with the soil water, most of them are subject to volatilization or vaporization.

Vaporization is when a liquid changes to a gas; whereas volatilization is when a specific substance

changes from a solid to a gas. The vaporization or volatilization of a substance will be related to the soil temperature. The temperature of the soil on the surface is usually much higher than air temperature or soil beneath the surface. Many chemicals will disappear in this manner. If they were slightly below the surface this would not occur.

Another loss of pesticides is by photodecomposition:
This is the break-down of a pesticide due to certain
rays of the sunlight. Some chemicals applied to the
surface with no water to carry them into the soil
can be lost completely by this. Some loss by this
occurs with many of the pesticides.

The soil organic material is inhabitated by various micro-organisms; algae, fungi, actinomyces and bacteria. They must have food for energy and growth. Organic compounds of the soil provide their major food supply. Most of the pesticides are organic compounds. Many of them can be used by the micro-organisms as food. This is a means of reducing the residue of pesticides in the soil. This break-down helps to deplete the pesticide residue in the soil, but seldom has an affect on the efficacy of the pesticide.

Rainfall and irrigation move surface applied pesticides into the soil. Some pesticides are injected or surface applied and mechanically incorporated. The depth of injection or incorporation is regulated to be near the target pest. Some pesticides could be lost from the surface so rapidly that effectiveness would be decreased. Not all pesticides can be incorporated. Some could be adsorbed by the clay and organic matter

too quickly and too tightly; thus reducing efficacy. Others may need the depth of soil to protect the crop seed or plant roots. With the pesticides that can be incorporated, the practice eliminates the reliance on water to move it into the soil. Before a recommendation to incorporate a pesticide is made, the pesticide, the pesticide soil characteristics are all considered.

The above discussion on soil factors, especially clay and organic matter, has been simplied, but its importance cannot be stressed enough. It has a direct bearing on the efficacy and residual properties of all soil applied pesticides. Many cases of pesticide failures could be sighted where soil characteristics were not considered before applying the pesticide. In developing a pesticide recommendation, the first step is to identify the pest and crop.

After the pest is identified, the soil characteristics should be considered before selection of a soil applied pesticide. The amount of the various soil particles and organic matter can be obtained by analysis.

This information is needed for most effective and economical pesticide application. Read the label and follow all directions for safe and effective pesticide use.

VARIABLES AFFECTING THE EFFIGACY OF INSECTICIDES (Dr. J. E. Roberts)

There are many variables affecting the efficacy of insecticides when applied to animals. In order that we might look at these variables in a more organized fashion, I have divided these variables into four categories: biological, mechanical, environmental and physical.

Under the category biological we have three sub-categories:

1) the human applicator; 2) the animal; and 3) the ectoparasite. The animal is a biological variable in that no two animals are alike as no two humans are alike. Animals will vary in many ways. For example: If you are trying to spray animals, the excitable animals will always be back in the corner of the pen, and you will not get to wet them as easily as you would the ones that are more docile. Consequently, when you look up to see which animal you are spraying, you are spraying one that you have already sprayed. So you have one in the back that has not been sprayed properly and the one in front of you has been sprayed too much. And, of course, there are other variables within the animal.

We have the size of the animal which is a factor within itself. Many of the pesticides are recommended on the basis of millileters for cc's per 100 lbs. of body weight. The size will vary and the person doing the treating must be able to look at the animal and say that this animal is a certain size. The length of the hairs may also be a variable. It takes about twice as much insecticide to wet an animal with long winter coat of hairs as it does to wet an animal during the summer months with short hair.

There is another biological variable that we want to think about - the differences in ectoparasites. For example, there are several insecticides that will do a good job on controlling

adult cattle lice; yet that same insecticide may not have too much affect on the egg stage which is glued to the hair. This means that you apply an insecticide and wipe out all the adults, but the immatures from eggs hatched after treatment may reappear in ten days to two weeks. For this reason, one may need to repeat the treatment. The horn fly is one of the easiest insects to kill because it spends its entire adult life on the cows except when the fertile females leave the cow to deposit the eggs in the fresh droppings. This makes it an easy adult insect to kill. They are small and when they come in contact with insecticides they are easy to kill. There are others that are not so easy to kill. The stable fly takes a blood meal and goes and rest on the wall until it digests that blood meal spending little time on the animal. This makes it more difficult to kill. The horse fly is large and has a tough outer covering. It takes the blood meal and leaves the animal for a long period of time. Because of the tough outer covering and the fact that it takes the blood meal and leaves the animal, it is more difficult to kill by far than any of the fligs that we have to deal with on cattle. The face fly is another pest that we have here in Virginia in great numbers. It spends a great deal of time off the cow as well as on the cow which makes it more difficult to kill. You may wipe out most of those on any one herd by a good treatment method. However, they are strong flyers and may migrate in from meighboring herds and reinfest a clean herd.

Now, perhaps we should consider the cattle grub. This is one that has a life cycle of about nine or more months within the cow itself. The grubs emerge out of that hole on the animals backs and go down into the ground to change into the winged form. There is one kind of insecticide that

you apply to the grub form. This kind of insecticide is called a systemic. Systemic insecticides are to be applied in late summer or early fall before the grubs start toward the animal's back. This means that timing is a variable in that the applicator must think about the proper time to treat.

There is a contact insecticide that must be applied after the grubs make the hole in the animal's back. This also requires correct timing.

Now we will go to the second category which is the mechanical. Good spray pens are a must. If we are going to treat animals, proper equipment is needed. For a few calves, a small compressed air sprayer would be alright, but it would not be proper for a large herd. A large herd will require the use of a good motof driven sprayer that will operate at least 1200 pounds of pressure per square inch.

There are automated sprayers for treating dairy cattle as they leave the barn. The animal triggers a mist applicator by some means; usually a metal apparatus similar to a radio aerial on an automobile. Sometimes animals stop while they are touching the trigger because they like to be cooled off on a hot day. The variable in this case is obvious. They will pump the spray machine dry and the animal becomes over treated. This type of automatic sprayer is not as popular as it was in years past.

We now shall consider dipping vats. Dipping vats are not as popular in Virginia as in other parts of the United States. They could become important in an attempt to eradicate problems such as scabies which now occurs in some of the western spates. Some of the variables pertaining to dipping vats are as follows: 1) sunlight may break down the chemical in the dipping vat solution; 2) animals will remove a certain amount of the chemical when they go through the dipping vat.

This means that the dipping vat solution should be tested regularly to determine the concentration of the insecticide. More has to be added now and then to maintain the proper oncentration.

The previous discussion pertains in part to dipping vats for cattle. Dipping vats for sheep should also be considered since there are a few portable dipping vats used for this purpose in Virginia. One of the variables here relates to how well the sheep are handled to make sure that they are completely submerged in the dipping solution. They have a tendency to make a big lunge and avoid being dipped completely.

We will now consider another type of mechanical applicator, the dust bag, which is used for the control of external parasites on cattle. Some of the variables that affect the efficacy of dust bags are as follows: 1) moisture -- dust bags must have protection from rainfall; (2) animal contact with the dust bags -- forced use is a must for example, animals must be forced to go under the bags to obtain water, feed and/or mineral; and 3) height of bag -- bags must be suspended within 18-22 inches above the ground for proper distribution of the dust on the animals to aid control of face flies. Dust bags must also be suspended in such a manner that they swing freely to assure better dust distribution for more effective control of insects on the cattle.

Another mechanical applicator is the backrubber. Most of the things mentioned above about dust bags would apply in part to the backrubber. However, one thing that should be mentioned as a potential variable with regard to the backrubber is they need to be resupplied with insecticide. The frequency of treating this is governed by how fast the backrubber is dried out by sunlight or animal usage.

We will now consider mechanical variables relating to the pour-on treatment method. Potential variables relating to this method of application are as follows: 1) Physical properties -- some pour-ons are called an invert immulsion, and when mixed with water and stirred thoroughly as prescribed on the label, they reach a "milk shake" like consistency. This mixture clings to the animal's hair and none of the mixture is lost by dripping. There are other pour-ons that do not perform in this manner and run off the animal if not applied carefully.

The spotton method of application places only a spot of insecticide on an animal's back. One of the variables here relates to the person doing the applicating. This method is, so convenient, some people tend to believe that the spotton gun can be used somewhat similarly to a water pistol, thereby eliminating the need for a good holding chute. This is not true. A good holding chute is a must for applying either the pour-on or spotton treatments in the proper manner.

With regard to holding facilities, the importance of a good pen for spraying cattle cannot be over emphasized. It is important that the spray pen not be too large or too small.

Let us now consider environmental variables. These are as follows: 1) rainfall -- a variable in that the insecticide

may be washed off the animals anytime after it is applied; thereby reducing the period of effective insect control; 2) cattle may also wash off a newly applied treatment by going from the spray pen into a pond especially on a hot day. This may also result in a fish kill; 3) temperature -- most modern day insecticides are broken down by ultraviolet sun rays and high temperatures; 4) humidity -- heavy dews should be allowed to evaporate before animals are treated in the early part of the day; and 5) wind -- this is not as important

a consideration with regard to animals as with plants because animals are usually treated under more confined conditions. However, it should be considered.

Now we will consider a fourth category - that of physical aspects with regard to variables. Let's think first about sprays. Under this category we have emulsifiable concentrates. This is a material that goes into suspension well. It usually turns milky white with water and it stays in suspension real well. It does not settle out and it is ideal from that stand point as opposed to wettable powders which require more agitation in the spray machine to keep them in suspension. In addition to that, wettable powders tend to wear out the machine more. They can cause more clogging of nozzles.

Then we have the pour-ons that we mentioned previously and we talked about some of the variabilities there. But pour-ons can be, as we mentioned the invert emulsion with a milk shake like consistency which clings to the hair well or it can be a material that is mixed with water and tends to run off the animal. That does not affect the efficacy of the material as much as we would think. But a farmer doesn't like to see the material running off in the ground. Ready-to-use light oils generally do a rather good job as a pour-on. It is very essential that you measure the material properly and estimate the weight of the animal as correctly as possible.

Dusts are used in some cases for example to sprinkle on hogs for lice. This is usually in a confined situation and that is the reason we said wind velocity would not be a big factor as it would on a crop.

One of the last things that we want to talk about is the mineral mixture plus an insecticide. The variable here is two-fold. One is that this mixture can be so palatable that cows consume it too rapidly. Fortunately, this has never

shown any ill effects to the animal but it can get to be quite expensive. The excess intake does not increase the effectiveness. The second reason is that some of the mineral mixtures are highly unpalatable and the animals eat them rather rapidly for awhile and then they don't eat them at all. Insect control decreases as consumption decreases.

We had a test one time in which everything was going fine with the mineral mixture. Then the grass got short and the farmer opened up another pasture. The cattle were more hungry for grass than they were for the mineral mixture and they wouldn't come back to the mineral mixture frequently. It should have been moved to a more central location, of course. The cattle didn't consume it on a regular basis and the hornfly control fell from about 95 percent to 80 some percent; a decrease of the animals were more hungry for the grass from the new pasture than for the mineral mixture. This caused the intake of the insecticide mineral mixture to be erratic.

Last but not least, one that has been talked about for several years is feed mixtures. This is very much akin to the mineral mixtures. Mineral mixtures may be used all during the hornfly season but the feed mixtures are to be used only for 7 days or 14 days as a means of treating animals for the control of cattle grubs. The insecticide is mixed with the feed. The variables are largely about the same or with the insecticide mineral mixtures.

In summary, there are four categories of variables which can effect how well insecticides control insects on animals. These are, as we have discussed, biological, mechanical, environmental, and physical.

BASICS OF PESTICIDES

INTRODUCTION (Dr. N. E. Lau)

This program is about chemical pesticides. More specifically, how they function. By this I mean; how they affect pests in various ways. These effects can be used as a tool to manage pest populations for the benefit of mankind. Chemical pesticides are discovered and mot designed for specific purposes. Discovering and getting government approval in the expensive process. On the average for a miler mesticide this costs industry about 8 mil con led ars and requires years. The information presented may help you understand the remember for some of the very specific directions that you will find of esticide labels. Obtain the maximum of service of pf your dollar investment for pesticide control pesticides only as directed on the label and understand this label fully. If you red assistance in these matters, please contact your local expension agent or your pesticide dealer:

BASICS OF INSECTICIDES (Dr. D. G. Cochran)

Today I want to talk to you about insecticides, how they kill insects, and a little at about their chemistry and properties. I need to make a few introductory remarks to lead into the subject I wish to discuss and one of these remarks is that most of the insecticides which are currently used today are what we we er to as antact insecticides; that is, they must actually come in contact with the insect in order for them to exert that texic action. The toxic action that we are concerned will stat which is referred to primarily as acute toxicity. The other words, that toxicity which occurs very rapidly after exposure to the material. We are also received in the toxicity that is referred to as chrome toxicity or that which occurs at a longer period of the fter exposure. In the latter instance, we are primarily interested in the effect on non target organisms. For killing insects which are of economic importance, we want to kill them rapidly and therefore we're imperested in the acute toxicity.

Another property which I must discuss with you is that most of the currently used insecticides are essentially insoluble in water. This means that in order to use them as insecticides, we must formulate them in some way that they can be more usable. To do this, they are prepared so that they can be extended in water, or used as an oil base spray.

Most of the insecticides we will discuss today can be grouped according to their chemistry or some other property. I find it easier in dealing with insecticides to approach, them in this way, and that is what I propose to do for discussing the materials under consideration. The first of these groups is the organic phosphate insecticides. We

will note that these materials can be thought of as being derivatives of the simple inorganic molecule phosphoric acid. What happens in this instance is that we can prepare an insecticide by substituting certain organic constituents for one or more of the atoms of this molecule. All of the hydrogens are usually replaced with an organic constituent. In addition, the double bonded oxygen can be replaced with a sulphur and one of the oxygens is sometimes replaced with a sulphur atom. Below we will see an example of how insecticides are actually prepared or derived from phosphoric acid. If you will focus your attention on the phosphorous atom, you will see that in methyl parathion, the oxygen has in fact been replaced by a sulphur.

Now if we can look at the next figures, we will see some other examples of organic phosphate insecticides. These materials have certain properties which we need to know something about. One of them is that the organic phosphate insecticides are rather short lived which is problably the result of the fact that they can be easily hydrolized in a slightly alkaline solution. In nature, this means that they do not persist in the environment and from a practical point of view, they often have to be applied repeatedly to bring about insect control.

As far as the ways these materials kill insects, we need to examine a schematic diagram of the insect nervous system.

(MeO)₂
$$\stackrel{S}{P}$$
 - S - C - C - O - C₂H₅ $\stackrel{S}{H}$ (MeO)₂ $\stackrel{S}{P}$ - O $\stackrel{S}{\longrightarrow}$ NO₂ $\stackrel{C}{\leftarrow}$ C - C₂H₅ METHYL PARATHION

In this nervous system we can look at the part referred to as the synapse. At this synapse, the way the nerve normally functions is that an impulse passes down the axon to the synapse. At that point, if the impulse is strong enough, it will cause the release of the neural transmitter substance acetylcholine.

Acetylcholine is released, produces a stimulation on the post-synaptic side, and then is rapidly destroyed by the action of the enzyme acetylcholinesterase. This enzyme is normally active for a very short period of time, destroying the acetylcholine. When an organic phosphate insecticide is introduced into this nervous system which is functioning in a normal manner, the effect is to bring about an irreversible inhibition of acetylcholinesterase. Under these conditions, acetylcholine accumulates at the synapse and itself, being rather toxic, produces a deteriorating effect upon the synapse. From this result, the insect nervous system rapidly degrades and is incapable of carrying out is normal function. As a result of this, the insect dies.

Turning to a second group of insecticides, the organic carbamate insecticides, we see the simple organic molecule, carbamic acid. Carbamic acid, as was the case with phosphoric acid can be transformed into an insecticide by substituting certain constituents.

O HO-C-NH₂ CARBAMIC ACID

Specifically the H on the hydroxyl group of the molecule and one or two of the hydrogens on the amine group of the molecule are substituted. Below we see an example of this kind of a substitution.

NAPHTHYL-N-METHYL CARBAMATE

In this case, the insecticide is Sevin, or carbaryl, and we see that the hydroxyl hydrogen has been substituted with a naphthalene ring and one of the amine hydrogens has been substituted with a methyl group.

SEVIN

This group of insecticides is also easily hydrolized in nature and therefore tends to be non-persistent in the environment. It has another property in that the carbamates tend to be rather specific. They do not kill a wide spectrum of insects, but rather certain specific ones. This was in contrast to the situation with the organic phosphate insecticides which were rather broad spectrum insecticides killing most insects with which they come in contact.

4

The way carbamates go about producing their toxic action, this is essentially similar to the situation with the organic phosphate materials. In other words, they are acetylcholinesterase inhibitors in the same sense that the organic phosphate materials are. There is one difference which needs to be mentioned, however, and that is that the inhibition produced by carbamate insecticides tends to be slowly reversible. This has a practical result in that sometimes when an insect appears to be under the toxic influence of a carbamate insecticide, it will subsequently recover. That recovery is probably related to the reversible nature of the inhibition of acetylcholinesterase produced by carbamate insecticides.

I want next to turn to another group of materials and talk briefly about them. This group is classified not according to chemical structure, but rather on the basis of origin. In this case, the origin is plants; in other words these are the so-called botanical insecticides. There are several materials which belong to this group that are of importance as insecticides but the most important of these is the pyrethrins insecticides. I am not going to attempt to show you a chemical formula for this group of materials, because the product which is available commercially is a mixture of at least 4 very complex organic molecules. They vary in their presence from your to year depending upon the crop that happens to be produced. Therefore, we are not dealing ith a constant chemical entity as was the case in the materials we have just reviewed.

The pyrethrin insecticides have one property which is very important as far as use is concerned. That is, they bring about an extremely rapid knockdown of the affected insects.

This is an important property and is one that producers of insecticides wish to incorporate into their products as often as possible. When I speak of a rapid knockdown with the pyrethrin insecticides, I am talking here in terms of knockdown in a matter of minutes; whereas in the case of the phosphate or the carbamate insecticides, it is usually in terms of knockdown of perhaps hours or even a day or more after exposure.

The mode of action of the pyrethrin insecticides is again on insect nervous systems. And in this instance, we believe that the pyrethrin insecticides bring about their toxic action by simply blocking the transmission of a nerve impulse in the axon. The details of this action are not well understood but this is perhaps the most accurate description that we can make at the present time.

I would like to turn next to a very brief discussion of two groups of insecticides which are no longer of much importance; but yet which are of considerable interest from a historical point of view. These are, of course, the insecticide groups DDT and the cyclodienes? These materials are no longer available for commercial use because of governmental regulations which have banned their availability and use. Nevertheless, the DDT insecticide is an example of a material which has been available and used for a long period of time. One of its outstanding properties is that it is a very stable chemical molecule. This has brought about some difficulties as well as some advantages from an insecticidal point of view. The advantages are, of course, that it can be applied once and remain effective for a long period of time. The disadvantage is that, if environmental point of view, DDT persists and continues to exert its toxic action over that same long period of time

Much the same can be said for the cyclodiene materials which are also quite stable chemical molecules and persist in the environment. Because of these properties of persistence in the environment, accumulation in food chains, and the possibility of carcinogenic properties attributed to them, these materials are no longer available.

From the point of view of mode of action, however, we will discuss both DDT and the cyclodienes. Both groups again act upon the nervous system of insects. Let's look at the schematic of the nervous system again. In this instance, what happens with regard to the presence of DDT is that it apparently unstabilizes the nerve membrane which, we can see is a charged membrane. DDT prevents this membrane from fully regaining its charged state once a nerve impulse has passed down the axon. This results in a very rapid action of the hervous system. It responds to low level stimuli, and produces the so-called DDT tremors. As far as the mode of action of the cyclodienes is concerned, what I have to say in this instance is that in spite of many years of activity in searching for the mode of action, it remains largely unknown-

I would like to turn next to a discussion of certain newer groups of insecticides which are becoming available rather slowly at the present time; but which may be of importance to us in the future. This group of materials, we can refer to as a class, but in this case we will simply say that they are biological insecticides. There are two such groups that are perhaps worth discussing at the present time. The first of these is the result of the action of certain microbial organisms. These organisms can be grown in culture and produce a toxin which is harvested commercially and transformed into an insecticide. When this is accomplished

the insecticide is formulated in an appropriate manner, and can be applied similarly to that which we would do with a typical chemical insecticide. In this instance, what we know about the results of the toxin is rather limited at present, but it seems to be a matter of the material having to be ingested or eaten by the insect. Once inside the insect body, the toxin produces a deteriorating condition in the gastrointestinal tract. Materials penetrate from the tract into the body cavity and produce an unstable physiological condition which is lethal. The nature of that toxic action is not well understood at the present time. The chemical nature of the toxin is not well known. This subject is being investigated and we should have additional information in the relatively near future.

The other group of biological materials is one we can refer to as hormone analogs. These material's are currently in the process of development and again, we can expect that a number of them will be available in the years ahead. Hissentially what happens here is that the hormonal action of a given substance is studied and becomes reasonably well understood. The chemistry of the product or the naturally occurring material is also understood, and attempts are made to produce materials closely related chemically to this substance. In this instance, the snythetic materials can be formulated and applied in the usual manner. The elea behind the hormonal approach to insecticides is to mimic) the action of the hormonal material and perhaps accentuate it to some extent. What we would be attempting. to do is to produce an abnormal effect related to the normal developmental effect of the hormone itself. In this way, it may be possible to interfere with the normal development of the insect so that it may result in the production of an extra immature stage or something of this nature.

Alternatively, we could hope to interfere with the normal reproduction of the insect, and thereby limit population growth.

I think that we can look forward into the future and say that materials such as I have just been discussing willassume greater importance in the future. We can expect to find some of these materials available commercially in the years ahead. I would also like to say in this connection there is extensive research going on at the present time attemptiong to develop materials which are related to the chemical groups of insecticides I discussed earlier. The ones that are perhaps of the most importance from this point of view are the pyrethrin insecticides. There is considerable activity going on at present in which new pyrethrin-like materials are being synthesized in the laboratory. of these materials look quite promising and we can probably : sexpect to hear more about them in the future. Likewise, there is research activity going on in the DDT group of insecticides. In this instance, the hope is that materials can be developed in the laboratory which will retain some of the desirable." characteristics of DDT, but which will eliminate the undesirable effects. In this way, we can perhaps avoid some of the environmental hazards which have arisen out of the use of DDT. So, with this information, I think we can say that we can look forward in the future to finding newer insecticides which will be of value to us.

BASICS OF HERBICIDES (Dr. J. S. Coartney)

There are many herbicides on the market today that will do a variety of jobs. This discussion is concerned with how herbicides work or the action by which they are able to kill plants. Before we can really understand how herbicides kill plants, we must understand a little about basic plant growth. In times past you might have had some botany, or morphology but we will go back and review some of the functions of plants which will help us in understanding how herbicides work.

Plants, like animals, are living organisms. They require food, water and a favorable environment in order to grow. Of course, there are many types of plants and they have different habitats or environments which are best suited to their growth. We divide plants into the lower plants and the higher plants. The lower plants are algae, bacteria, fungi or as weeds are called - the crop plants and weeds belong to the flowering plants or higher plants. A Each year we get many weeds sent in for identification. We have about 500 different weedy species that occur routinely in agricultural production.

The higher or flowering plants are divided into two main groups - the monocots which have parallel leaf veination and dicots which have a net leaf veination. Corn is a grass or monocote and a bean is a broadleaf or dicot. Plants have roots, stems and leaves. Later they produce flowers, fruits and seeds.

Plants are also divided on the basis of their life cycles. Those which are annuals live one year. They germinate, grow, flower and produce seed within one year. There are many common examples of annual weeds. The mustards and many of the things that we would grow in our garden are annuals.

Biennial plants, like the thistle, complete their life cycle In two years. The first year they grow vegetatively and the second year, they produce flowers and seeds.

Prennials are plants which are those which grow for more than two years. Prennials are very difficult to control because they have underground storage systems that are capable of storing large quantities of food. It is difficult to get chemicals down into this underground root system.

Let's look now at photosynthetic process or the manner in which green plants are able to produce sugar. This is, the process whereby light energy from the sun is trapped in the green leaves of the plant and then converted to sugar. This process is the basis of all life. Were it not for this photosynthetic process, there would be no food for humans or other animals. The light energy is trapped in the green leaves. Leaves contain little structures called chloroplasts which house the chlorophyll molecules and give the leaf its green color. Carbon dioxide from the air and water from the roots is combined in the presence of the chlorophyll in the green plant to produce sugar and oxygen. The sugar that is produced is then converted into many other ingredients within the plant. It is converted into starches, proteins and many other substances that are required for growth of the plant. Growth occurs by multiplication of the individual cells and then enlargement and differentiation into various structures.

Now that we have reviewed basic plant growth; we can talk intelligently about how we can kill plants. We mentioned light as being a basic requirement for plant growth or food making. It is a common practice in gardens or small landscape areas to use a black plastic mulch in order to shade out or kill weeds. The black plastic withholds light and eliminates the photosynthetic process and the plants starve to death.

All of us know that water is in essential ingredient for both animals and plants. In terms of weeds, we can withhold water by just pulling the weed up and letting it die. Water can be withheld from the plant chemically by use of salt. I am sure that most of you at some point have poured salt around a plant or weed which resulted in its death. The salt draws water from the plant and restricts the movement of new water into the plant causing the plant to dessicate and die. We can also have the other extreme of too much water. This is used to our advantage in the production of rice where the roots of the rice will tolerate very wet conditions; whereas many of the weeds will not tolerate extreme wet conditions.

A favorable temperature is essential for the growth of plants. Either low or high temperatures will limit plant growth. In terms of weed control, Jack Frost is well known for his ability to control weeds. On the other extreme are the high temperatures which have also been used to kill plants. Flame throwers have been used for many years to kill weeds. This is refined somewhat with the flame cultivator where we are able to obtain selectivity. In the case of the flame cultivator, a flame is directed at the base of the woody cotton plant and it kills the annual weeds without destroying the cotton plant.

Another group of herbicides are called contact herbicides. Many of you will recognize paraquat which is used in notillage corn production where the fields are turned brown almost over night after using contact herbicide paraquat. The paraquat destroys the lipid and protein membranes which surround the individual cells. Destruction of membranes destroys the integrity of the individual cells and causes very rapid death. Contact herbicides do not move or it

translocate within the plant. Thus, good coverage is necessary for good control and we remend higher gallonage of water per acre and often a wetting at to disperse or spread the material over the leaf surf

The photosynthetic/inhibitors are another to therbi cides. We mentioned possynthesis as being or important for all pis alf we can interest way with this process, we a herbicide wood ef compounds that interfere with e photosynethetic process are the triazine herbicides at trazine and simazine are trivazine herbicides common asset in corn product on Another group of photosynthetic inhibitors are the świstituted ureas. Bromacil, sold as Hyvar is a common member of this group. These materials are able to interfere with the metabolic processes within the plant, whereby sugar is synthesized. By interferring with these processes, they prevent food formation and the plant starves. It is: important to note that materials of this nature are required in extremely small qualitaties Metabolic reactions within the plantare controlled by substances called enzymes. Enzymestare catalysts - they are present in very minute. quantities withing the plant and when a photosynthetic inhibitor reacts with anxenzyme, it requires only a minu quantity in the plant to the job.

Another group of herbicides are the respiration, which interfere with the process of respiration. Respiration is the utilization or the breakdown of bod resulting in energy. This is in essence just the reverse of photosynthesis. Indeed, they have many of the common intermediates. During respiration, starch or other food sources are converted back into carbon dioxide and water. The resulting energy is used to make other intermediates within the lant and growth.

Another group of herbicides are the protein inhibitors. Proteins are essential within plants as structural proteins and enzymatic proteins. Structural proteins give structure to the plant cell membranes: Enzymatic proteins are catalysts which are useful in synthetizing chemical reactions. As we mentioned earlier, they are required in only minute amounts and inhibitors that inhibit enzymatic proteins require only the minute amounts to function as weed killers. In order to visualize destruction of proteins, think of a hen egg. The white of an egg is protein. When you cook an egg, the egg coagulates forming a rigid structure as the egg protein is killed. Some herbicides are able to function in this same manner within a plant.

Another group are those that interfers with celludivision.

Cell division is a very complex process whereby one cell duplicates or becomes two. There are many processes involved with cell division and these are not well understood. Two herbicides that interfere with will division process are CIPC and another dacthal. These are common presmergence herbicides which act at the growing points or meristems of the plant. The plant is unable to produce new cells, in a mormal manner and we have a workable herbicide.

Another group of herbicides are the growth regulator herbicides. These materials have been around for several years; the 2,4-D being the oldest and most will known on the growth regulator herbicides. Discovered back in the 40's during actual war research, this material was found to be a very potent inhibitor of plant growth. It's been studied for several years since then, and scientists still do not completely understand how it or other growth regulators are

able to control plant growth. As more and more studies are completed on plant metabolism, they're able to actually trace these materials back to the nucleic acids. The nucleic acids within nucleus of a cell contain the memory system or the brain of a cell. If these materials can work in the cell at the brain level, they can cause wrong directions to be sent resulting in distorted or disorderly growth. As a result of this disorderly growth, then the plant is not capable of completing its life cycle. I've heard many farmers use the expression that 2,4-D causes a plant to grow itself to death and, I guess, this is a good an explanation as any because when we apply 2,4-D to a plant, we see that it does grow faster and in a distorted manner.

Now that you understand more about how these materials work in the plant, let's look at ways of gaining selectivity with a herbicide in a weed-crop situation. In the case of the triazines which are used commonly in corn, the corn has the capability of rapidly breaking down the triazine molecule. The weeds in this case do not have this capability or only to a very limited degree; thus, the simazine or atrazine gives considerable selectivity in the forn because the corn will metabolize the triazine molecule and the weeds will not. A similar situation exists in the case of 2,4-DB which is used in legumes. Only in this case the 2,4-DB that we apply is acutally an inactive materia. It is broken down within a plant to the active form 2,4-D. It so happens that. the weeds are more capable of breaking down 2,4-DB than the alfalfa or other legumes; thus, we have a basis of selectivity and the weed converts into 2,4-D which then results in its Another way that we're able to gain selectivity dentise. is through movement or placement of materials in the soil. Take again the triazine molecule with which you are familiar. Simazine is safe to use in ornamentals only because it remains at or near the soil surface above the root system of the plant. If it were picked up by the root system of the plant, it would cause injury or even death. We have other cases of selective wetting where one may have a waxy leaf surface, such as garlic, which is difficult to wet. Therefore, we find that garlic is hard to control. Knowing this, we can go to a formulation that will dissolve or work its way through the waxy leaf surface. We are able to gain entry of the 2,4-D into the garlic plant with an ester formulation, but not with the water soluble forms like the amine formulation. Another way relates to the growing point of the plant. The monocots (grasses) tend to have enclosed growing points; whereas the broadleafs have growing points that are exposed. Thus, contact herbicides often give more effective broadleaf weed control than grass control.

These are just some of the things that are involved with the mode of action of herbicides, and we cannot go into great detail at this time.

FUNGICIDES AND THEIR ACTION (Dr. R. J. Stipes)

Today, I would like to give you a brief introduction to fungicides (fungitoxicants). Even though this presentation is very short, it should provide the basic, salient features of this unique group of pesticides.

It goes without saying that fungicides are important, if not essential, in plant culture. Although the manufacture and utilization of fungicides do not equal that of herbicides and insecticides, the total failure in the culture of many plants can be attributed specifically to the failure of the grower to apply the correct fungicide in the proper manner at the correct time. As plant protectionists, however, we need to consider seriously the integrated approach to disease and pest control in general; that is, we need to implement all known pest control measures cultural control, biocontrol, host resistance, chemical control, etc. Then, in the chemical control of pests, we need to consider how fungicides might be used most effectively in an integrated program with insecticides, herbicides, nematicides and possibly other*types of pesticides.

TERMINOLOGY - is an essential aspect of understanding any discipline, and the short glossary below provides brief definitions of basic terms:

fungicide -- compound used specifically to kill fungus.

fungistat - compound used specifically to inhibit a
fungus; often plant disease fungicides
present in sub-lethal concentrations only
inhibit rather than kill the target fungus.

efficacy - relative activity or effectiveness of a fungicide by which it can kill fungi or control plant diseases caused by fungal pathogens.

residue - that fungicide (or pesticide) which remains or is left on the plant surface after application. The marketability of a fungicide depends, in part, on how residual it is. If applied in proper concentrations at recommended times, the product must meet legal residue tolerances.

phytotoxicity - the capacity of a fungicide (or any pesticide or chemical) to poison or injure the plant upon which it has been placed.

Bordeaux mixture, for example, is notoriously phytotoxic while the fixed copper fungicides are less phytotoxic.

active ingredient (a.i.) - the actual fungicide itself usually given in percent, in any of the commercial preparations - wettable powders, emulsifiable concentrates, dusts, gases, granules, etc.

inerts - the non-fungicide (non-active ingredient)
constituents of a commercial fungicide
preparation. Inerts are composed of fillers,
spreaders (surfactant/s), stickers (flour,
gums, resins, casein, etc.) and other
substances.

LD₅₀ - the lethal dose of a fungicide that kills 50% of the test population of the target organism (fungus). With regard to efficacy in killing fungi, the lower the LD₅₀ value,

the better. However, with regard to toxicity to animals or humans (the applicators) the larger the LD₅₀ value the better. This distinction is most important to note.

specificity - that attribute of a fungicide to be
specific in its killing ability for certain
fungi or certain classes of fungi. Some
fungicides are broad spectrum, or have low
specificity, and kill many different kinds
of fungi; others are narrow spectrum in
their activity, and kill only very few
fungi. Specificity and spectrum of activity
is a very important consideration in selecting fungicides.

prevention vs. cure of plant disease - prevention of plant disease is always the best approach and is achieved with fungicides by protecting the uninfected plant surface with an appropriate fungicide. These fungicides are known as contact fungicides, preventatives or protectants. The treatment (therapy) or successful cure of established disease is accomplished on a very limited basis in plant pathology. There has been success in treating Dutch elm disease in very early stages with surgery and/or systemic fungicide application.

conventional fungicides are the major group of protectant compounds applied as dusts and sprays to plant surfaces, and do not move into or within the treated plant.

systemic fungicides are compounds which, after being applied to plant roots (or less frequently shoots), are taken up and translocated within the plant. They may function preventively or curatively in disease control.

Tolerance - is the "defense mechanism" developed by
the target fungus by which it becomes
insensitive to repeated contact with the
same fungicide. This is believed to occur
through selection and genetic processes.
For example, Cercospora that causes peanut
leafspot is becoming more tolerant to
benomyl, and therefore benomyl can no longer
provide the disease control that it did at
first.

BASIC REQUIREMENTS OF FUNGICIDE USAGE - must be understood, and a few are:

Proper choice - one must hit the target organism; for example, one would not choose benomyl to control water molds.

Proper timing - one must apply the fungicide at the best time; for example, fungicides are not applied in late summer to control leafspots of landscape trees.

Proper placement - one must apply the fungicide on the correct site.

Proper solubility - most organic fungicides are poorly soluble in water, but a certain amount of solubility is essential, so that the fungicide , can move into and kill the fungus.

Proper formulations - must be chosen to get the best

emulsifiable concentrates, granules, gases, dusts, solutions, etc.

Proper coverage - is essential to provide maximum protection. To achieve this, spreaders (surfactants that lower surface tension) and stickers (flour, gums, resins, casein, etc. that enhance weathering properties) are added as inert ingredients.

In addition to these requirements, a fungicide should:
-not injure the plant on which it is placed;
-be reasonable in cost:

be non-toxic to man and animals;

-be compatible with other pesticides, especially insecticides;

-be relatively stable but not too residual; and -always have complete registration -- both state and federal.

FUNGICIDE USES are many. The major ones are:

Seed treatment to afford protection against seed and soil-borne fungi. Fungicides are dusted or sprayed onto seeds. Generally done by seed companies. Chloranil and thiram are effective seed treatment fungicides.

Soil treatment - to help rid the soil of fungal pathogens is accomplished in some cases by application of fungicides to the furrow as the seed is planted.

of fungicides, and wettable powder formulations the most popularly used. Air blast sprayers that apply high volumes and low fungicide concentrations or low volumes and

high fungicide concentrations are very effective. Aircraft is also used.

Post-harvest treatment of fruit, for example, has been used with success. The major problem here, however, has been that of residues.

CLASSES OF FUNGICIDES should be considered to help us categorize major groups and examples of each. Fungicides can be classified in different ways. For example, one could indicate that there are inorganics and organics. However, the following categories appear to be the most commonly used and perhaps the easiest to remember.

Sulfur - is the oldest known fungicide. Effective against powdery mildew. Combined with lime, it is used as lime-sulfur, effective against peach leaf curl and other diseases.

Copper - is another old but effective fungicide.

Used as copper sulfate with lime in Bordeaux mixture: It is highly effective, but as Bordeaux mixture is phytotoxic in many cases. Fixed coppers are much less phytotoxic. Copper controls many fungal and bacterial diseases.

Mercury - fungicides are among the most effective of all. The organic mercuries especially have been used for control of anthracnose, seed-borne organisms and other problems. Due to their long residual and cumulative activity and toxicity to life systems, they have been banned from use.

Dithiocarbamates (including the ethylenebisdithiocarbamates) are the "workhorse" of the
fungicides. The first organic fungicides were

the dithiocarbamates, shown to be effective in controlling a very broad spectrum of causal organisms in the 1930's. Examples of is group would include thiram, ferbam, ziram, nabam, zineb, maneb and others.

Heterocyclic nitrogen campounds constitute a very important group of fungicides. Important examples are captan, a very broad spectrum toxicant, difolatal and glyodin used common on control of fruit diseases.

Aromatics have the benzene ring as a common feature of their chemistry. Examples are: (1) phenols such as pentachlorophenol - used as a wood preservative; (2) the quinones such as chloranil - used in seed treatment; (3) the nitrated benzenes such as PCNB (pentachloronitobenzene) - used as a seed treatment and soil fungicide; and (4) botran - used to control Rhizopus rot of fruits, and (5) the aromatic dyes such as Dexon - used to control the water molds.

Antibiotics - are compounds produced by assorted microorganisms that have activity against plant disease as well as human and animal pathogens. A good example is strentomycin, used in both plant and human diseases; that is effective against fireblight of apple and pear. Another is cycloheximide, an antifungal antibiotic used, to control turf and other diseases. The tetracyclines have good activity against the mycloplasmalike organisms that incite "yellow" diseases in several important plants.

Systemics are the newest members of the fungicide group of pesticides. These compounds are so named because they have the unusual property of being able to gain entrance and move within the plant after application. These compounds are also used as conventional contact spray fungicides. Important groups are the benzimidazoles such as benomy? and thiabendazole - used to control a wide variety of plant diseases, the oxathins such as Plantvax and Vitavax - used to control smuts and rusts and thiophanates which also have broad spectrum activity like the benzimidazoles. Many other groups of systemics have been and are being synthesized and tested.

Not included in this listing of fungicides are the very important group of soil sterilants which have the capacity to kill many if not all forms of life in the soil.

In summary, then, there are many different classes of fungicides, designed for specific uses. These compounds have various spectra of activity as well as modes of action in controlling the various plant disease fungi. The best compound should be applied at the right time in the recommended manner to achieve optimum results. One should always consult the VPI&SU Extension Division for these recommendations.

RODENTICIDES AND AVICIDES - MODES OF ACTION (Dr. G. Cross)

the mode of action of the more commonly used rodenticides and avicides. Of the numerous rodenticides and avicides, all have one short-coming or another. Such factors as toxicity, dosage levels, and relative effectiveness are obviously important. Less often considered, but of equal importance, are degrees of acceptance and reacceptance and the development of tolerances. Odor and taste must be considered in some instances. Safety precautions are an essential part of any procedure. An understanding of the mode of action will enable you to use rodenticides and avicides more effectively and safely.

Rodenticides are pesticides used to control rodents such as rats, mice; and squirrels. They are normally imployed in solid baits, liquid forms, as a dust or volatile chemicals used as fumigants. The most effective rodenticides are those with a high toxicity and palatibility with one or more safety features.

Rodenticides used in solid haits or liquid forms can be divided into two groups based on the mode of action, the acute rodenticides and the chronic rodenticides. The acute rodenticides are those in which a lethal quantity of poison is ingested in a/single dose, in the food or drink of a rodent. Some common acute rodenticides are Red Squill, Strychnine and zinc phosphide. They cause death by heart paralysis, gastrointestinal and liver damage, or by attacking the central nervous system. The target animal must consume a lethal dose before the onset of poisoning symptoms. A sub-lethal dose may produce side effects which will make the rodent "bait shy." Pre-baiting is recommended before applying acute rodenticides so the animal will be conditioned to the bait. The unpoisoned bait is first presented to the rodents until they freely feed regularly and then it is replaced by bait containing the poison. Chronic rodenticides bring about death of an animal only after the poisoned bait or liquid has been consumed on a number of occasions. Some common chronic rodenticides are Warfarin, Pival. Fumarin and Diphacinone. Because the poison is consumed over a period of time a low dosage is

lethal. For example, a brown rat can survive a single 50 MG/KG dose, but succumbs to 5 consecutive doses of 1 MG/KG taken on successive days. The symptoms of poison are so delayed that the animal never learns to associate discomfort with the bait consumption, and continues to feed until a lethal dose has been ingested. The main components possessing chronic poisoning action are the anti-coagulants, which interrup the synthesis of blood-clotting factors so the poisoned animals die from internal bleeding. Chronic rodenticides are relatively nontoxic to domestic animals and man; however, there is no such thing as a "safe rodenticide."

However toxic a chemical poison might be, it will not be lethal unless a rodent of its own volition consumes a lethal dose. Additives are sometimes included in the bait to improve performance.

Attractants such as flavoring or oils are sometimes added to bait to make it more appealing by enhancing the taste or masking disagreeable odors. Anti-coagulants may be made more lethal by adding potentiating agents that accentuate the action of the anti-coagulants. Preservatives

and binders are used in baits to keep them from deteriorating over time. To guard against accidental consumption of the poisoned bait by nontarget animals, safety additives may be incorporated. Since rodents are unable to vomit, it is often the practice to incorporate an emetic agent in the bait. The emetic agent will induce vomiting and provide a safety factor for the nontarget animals.

Secondary poisoning to animals which feed on dead or dying rodents should be anticipated. This danger may be reduced by removing rodent carcasses whenever possible.

Acute or chronic poisons may be used in dust formulations. A poisoned dust is placed in the hole and burrows of rodents where it adhers to the feet and fur and is transferred to the mouth during normal cleaning and grooming activities. This method requires a high concentration of poison since the animal can only be expected to consume small amounts. The advantage of contact dusts is that rodents do not suspect the source of illness.

In situations where rodents do not respond topoisoned baits or dusts, a fumigation technique
can be used. Rodents breathe the volatile
substances and gases which cause death. The most
frequently encountered fumigants are hydrogen
cyanide and methyl bromide.

Avicides are pesticides used to control birds in pest situations. Some common avicides include strychnine, compound DRC 1339 and avitrol. Most avicides are acute poisons which act on the The reaction time required central nervous system. to kill a bird varies with the type of poison. Strychnine used as an avicide will kill birds shortly after the bait is consumed while the avicide containing the compound DRC 1339 does not kill-the birds for several hours, generally after they go to roost. This difference in mode of action is important in reducing the effects of secondary poisoning to animals that consume dead Birds dying at the roost sites can be easily picked up and disposed of.

No avicide has been found that is specifically for a given bird, thus there is always a danger that non-target birds will be affected. A poison such as strychnine is lethal to all animals while DRC 1339 is more lethal to starlings and blackbirds but will also kill smaller birds. Avitrol is an avicide which is used to control blackbirds. Birds ingesting avitrol react with distress symptoms and calls which frighten away the remainder of its flock from the feeding area with a minimum of mortality. The advantage of avitrol is that only few birds need to ingest the bait, thus a relatively small amount of bait needs to be put out.

Not all animals react arike to rodenticides. Some individual animals, even within the same species, are considerably more resistant to toxic effects than others. Some effects vary with the seasons, and with age, diet and even sexes of the animals. Dosage levels are usually calculated to include the bulk of the above average resistant animals. Nothing is gained by increasing these levels. In fact, such a practice is doubly objectionable for acceptance and is usually decreased while the layouts to other larger animals is greatly increased.

A thorough knowledge of the manufacture of rodenticides and avicides will assist you in selecting the best control measure for a particular situation.

NEMATICIDES (Dr. W. W. Osborne)

To determine, the type nematicide and method of application for plant parasitic nematode control, it is first necessary to know something about the function of plant parasitic nematodes, the different kinds of nematodes and how they feed. There are over 55 different genera of plant parasitic nematodes containing approximately 1500 species. They feed on plant stems, leaves, flowers, seeds and roots. This presentation will deal only with nematodes which feed on plant roots since this is the most important type of nematode in Virginia.

Plant parasitic nematodes are fairly complex animals. They are round worms and range from 1/64 to 3/16 of an inch in length; therefore, they are microscopic in size. The head portion contains a stylet which is a needle shaped device which the nematode uses to feed on plant cells. Nematodes lay eggs which hatch to produce one larvae per egg. The eggs and larvae overwinter in soil. The larvae are the stage of the life cycle where control measures are most effective. When nematode populations are high in the soil, they cause a great deal of damage to plant roots and chemical control measures must be taken. We also use crop rotations and other cultural practices for nematode control, but in most instances chemical control is essential to assure profitable crop production.

Two major groups of nematodes feed on plant roots. They are classified according to their feeding habits. One group contains ectoparasitic nematodes which spend their total life cycle in soil and feed along the surface of plant

1 00

roots. They may feed as deep as three to five cells, but seldom enter the root. Nematode genera in this group are spiral, stunt, stubby roots, ring and certain other types. The second group of nematodes overwinter in soil as eggs and larvae. However, they spend most of their adult life within plant roots; therefore, they are called endoparasitic nematodes. Time of chemical application to control nematodes is dictated to a large extent on whether control is being used against ectoparasitic of endoparasitic nematodes. Endoparasitic nematodes such as root-knot, root-lesion, cyst, and certain other nematodes are found in Virginia.

To date there are no practical effective nematicides which can be applied to plant foliage and translocate downward for nematode control in soil and roots. Vrjdate is moderately effective against certain nematodes when applied in this manner. However, more research and development needs to be conducted with this compound.

The two major types of treatment for nematode control in soil are soil fumigants and non-fumigants. Fumigants are liquid compounds which have a high vapor pressure that causes them to diffuse through soil. These type compounds such as D-D, EDB, Telone, Methyl Bromide and others were the first group of compounds used for nematode control and are the first generation nematicides. Chemicals such as D-D, EDB, and Telone must be injected to a soil depth of approximately 8 inches to provide adequate nematode control.

The new second generation of nematicides are non-fumigant organic-phosphates and organic carbamates. The first and most effective nematicides in this group are Mocap, Temik, Nemacur, and Furadan. These compounds are applied differently than are soil fumigants. They do not have vapor pressure and diffuse through soil as do soil fumigants. Non-fumigant

nematicides are applied to the soil surface and incorporated to a depth necessary for nematode control. The necessary depth of chemical incorporation in soil varies with the type compound. A compound such as Mocap can be incorporated lightly and will be moved downward into the root area by soil water. However, a compound such as Dasanit does not move readily with soil water and must be thoroughly incorporated to the necessary depth to protect the root system from nematode attack. Research is being conducted with both liquid and granular formulations of non-fumigant type nematicides. In general the granular formulations are less toxic to humans and provide better nematode control per pound of active ingredient.

Research is conducted in Virginia for at least two years on chemical rates and method of chemical application prior to considering the chemical for recommendation. Major crops for nematicide usage in Virginia are on tobacco, peanuts, soybeans, and sweet potato.

Non-fumigant type nematicides have an advantage for nematode control in tobacco because there is no waiting period between time of chemical application and transplanting tobacco. Also, soil moisture and temperature are not critical factors when applying non-fumigant nematicides. Some of the non-fumigant nematicides also provide control of certain insects.

Nematicides which have been tested under Virginia conditions and prove to be effective and profitable to use are recommended in the Virginia Plant Disease Control Guide, Series #2, which is published annually by VPI&SU Extension Division.